‘Easier’ open data about waste in Scotland

Objective

Several organisations are doing a very good job of curating & publishing open data about waste in Scotland but, the published data is not always “easy to use” for non-experts. We have see several references to this at open data conference events and on social media platforms:

Whilst statisticians/coders may think that it is reasonably simple to knead together these somewhat diverse datasets into a coherent knowledge, the interested layman doesn’t find it so easy.

One of the objectives of the Data Commons Scotland project is to address the “ease of use” issue over open data. The contents of this repository are the result of us re-working some of the existing source open data so that it is easier to use, understand, consume, parse, and all in one place. It may not be as detailed or have all the nuances as the source data – but aims to be better for the purposes of making the information accessible to non-experts.

We have processed the source data just enough to:

  • provide value-based cross-referencing between datasets
  • add a few fields whose values are generally useful but not easily derivable by a simple calculation (such as latitude & longitude)
  • make it available as simple CSV and JSON files in a Git repository.

We have not augmented the data with derived values that can be simply calculated, such as per-population amounts, averages, trends, totals, etc.

The 10 easier datasets

dataset (generated February 2021) source data (sourced January 2021)
name description file number of records creator supplier licence
household-waste The categorised quantities of the (‘managed’) waste generated by households. CSV JSON 19008 SEPA statistics.gov.scot URL OGL v3.0
household-co2e The carbon impact of the waste generated by households. CSV JSON 288 SEPA SEPA URL OGL v2.0
business-waste-by-region The categorised quantities of the waste generated by industry & commerce. CSV JSON 8976 SEPA SEPA URL OGL v2.0
business-waste-by-sector The categorised quantities of the waste generated by industry & commerce. CSV JSON 2640 SEPA SEPA URL OGL v2.0
waste-site The locations, services & capacities of waste sites. CSV JSON 1254 SEPA SEPA URL OGL v2.0
waste-site-io The categorised quantities of waste going in and out of waste sites. CSV 2667914 SEPA SEPA URL OGL v2.0
material-coding A mapping between the EWC codes and SEPA’s materials classification (as used in these datasets). CSV JSON 557 SEPA SEPA URL OGL v2.0
ewc-coding EWC (European Waste Classification) codes and descriptions. CSV JSON 973 European Commission of the EU Publications Office of the EU URL CC BY 4.0
households Occupied residential dwelling counts. Useful for calculating per-household amounts. CSV JSON 288 NRS statistics.gov.scot URL OGL v3.0
population People counts. Useful for calculating per-citizen amounts. CSV JSON 288 NRS statistics.gov.scot URL OGL v3.0

(The fuller, CSV version of the table above.)

The dimensions of the easier datasets

One of the things that makes these datasets easier to use, is that they use consistent dimensions values/controlled code-lists. This makes it easier to join/link datasets.

So we have tried to rectify the inconsistencies that occur in the source data (in particular, the inconsistent labelling of waste materials and regions). However, this is still “work-in-progress” and we yet to tease out & make consistent further useful dimensions.

dimension description dataset example value of dimension count of values of dimension min value of dimension max value of dimension
region The name of a council area. household-waste Falkirk 32
household-co2e Aberdeen City 32
business-waste-by-region Falkirk 34
waste-site North Lanarkshire 32
households West Dunbartonshire 32
population West Dunbartonshire 32
business-sector The label representing the business/economic sector. business-waste-by-sector Manufacture of food and beverage products 10
year The integer representation of a year. household-waste 2011 9 2011 2019
household-co2e 2013 9 2011 2019
business-waste-by-region 2011 8 2011 2018
business-waste-by-sector 2011 8 2011 2018
waste-site 2019 1 2019 2019
waste-site-io 2013 14 2007 2020
households 2011 9 2011 2019
population 2013 9 2011 2019
quarter The integer representation of the year’s quarter. waste-site-io 4 4
site-name The name of the waste site. waste-site Bellshill H/care Waste Treatment & Transfer 1246
permit The waste site operator’s official permit or licence. waste-site PPC/A/1180708 1254
waste-site-io PPC/A/1000060 1401
status The label indicating the open/closed status of the waste site in the record’s timeframe. waste-site Not applicable 4
latitude The signed decimal representing a latitude. waste-site 55.824871489601804 1227
longitude The signed decimal representing a longitude. waste-site -4.035165962797409 1227
io-direction The label indicating the direction of travel of the waste from the PoV of a waste site. waste-site-io in 2
material The name of a waste material in SEPA’s classification. household-waste Animal and mixed food waste 22
business-waste-by-region Spent solvents 33
business-waste-by-sector Spent solvents 33
material-coding Acid, alkaline or saline wastes 34
management The label indicating how the waste was managed/processed (i.e. what its end-state was). household-waste Other Diversion 3
ewc-code The code from the European Waste Classification hierarchy. waste-site-io 00 00 00 787
material-coding 11 01 06* 557
ewc-coding 01 973
ewc-description The description from the European Waste Classification hierarchy. ewc-coding WASTES RESULTING FROM EXPLORATION, MINING, QUARRYING, AND PHYSICAL AND CHEMICAL TREATMENT OF MINERALS 774
operator The name of the waste site operator. waste-site TRADEBE UK 753
activities The waste processing activities supported by the waste site. waste-site Other treatment 50
accepts The kinds of clients/wastes accepted by the waste site. waste-site Other special 42
population The population count as an integer. population 89800 21420 633120
households The households count as an integer. households 42962 9424 307161
tonnes The waste related quantity as a decimal. household-waste 0 0 183691
household-co2e 251386.54 24768.53 762399.92
business-waste-by-region 753 0 486432
business-waste-by-sector 54 0 1039179
waste-site-io 0 -8.56 2325652.83
tonnes-input The quantity of incoming waste as a decimal. waste-site 154.55 0 1476044
tonnes-treated-recovered The quantity of waste treated or recovered as a decimal. waste-site 133.04 0 1476044
tonnes-output The quantity of outgoing waste as a decimal. waste-site 152.8 0 235354.51

(The CSV version of the table above.)

Waste sites and the quantities of incoming materials

The dataset

SEPA publish a “Site returns” dataset (accessible via their Waste sites and capacity tool) that says…​

  • how many tonnes
  • of each (EWC coded) waste material
  • was moved in or out
  • of each authorised waste site in Scotland.

Here is an extract…​

SEPA Site returns sample

This is impressive, ongoing data collection and curation by SEPA.

But might some of its information be made more understandable to the general public by depicting it on a map?

Towards answering that, we built a prototype webapp. (For speed of development, we considered only the materials incoming to waste sites during the year 2019.)

Data mapping

To aid comprehension, SEPA often sorts waste materials into 33 categories. We do the same in our prototype, mapping each EWC coded waste material into 1 of the 33 categories…​

33 materials, categorised

The “Site returns” dataset identifies waste sites by their Permit/Licence code. We want our prototype to show additional information about each waste site. Specifically, its name, council area, waste processing activities, client types, and location – very important for our prototype’s map-based display!

SEPA holds that additional information about waste sites, in a 2nd dataset: “Waste sites and capacity summary” (also accessible via their Waste sites and capacity tool). Our prototype uses the Permit/Licence codes to cross-reference between the 2 SEPA datasets.

SEPA provides the waste site locations as National Grid eastings and northings. However, it is easier to use latitude & longitude coordinates in our chosen map display technology so, our prototype uses Colantoni’s library to perform the conversion.

The prototype webapp

A ‘live’ instance of the resulting prototype webapp can be accessed here.

Below is an animated image of it…​

our prototype webapp

UI & controls

  • Each pie chart depicts the amounts of materials incoming to a single waste site, or the aggregation of waste sites within a map area.
    • single waste site pie Depicts a single waste site.
    • multiple waste sites pie Depicts an aggregation of 26 waste sites.
  • no pie (I.e. a number without a surrounding pie chart) depicts a waste site with no incoming materials (probably because the site was not operational during 2019).
  • material details pop-up Hovering the cursor over a pie segment will pop-up details about incoming tonnes of the material depicted by the segment.
  • area highlighting Hovering the cursor over a pie that depicts an aggregation will highlight the map area in which the aggregated waste sites are located.
  • waste site pop-up Clicking on a single waste site will pop-up details about that waste site.
  • zoom control The webapp supports the usual zoom and pan controls. The user can also double-click on an aggregation pie to zoom into the area that it covers.
  • attributions Clicking on ‘attributions’ will display a page that credits:

Closing thoughts

But might some of its information be made more understandable to the general public by depicting it on a map?

For any good solution, the answer will be an obvious ‘yes’. But what about for our prototype webapp solution?…​

We think that it could help pique interest in the differences in the amounts & types of waste materials that are being disposed in different areas of the country. For example…​

splash view

Glancing at our prototype’s map (image left; at the default zoom level), the seemingly disproportionate amount of soils & stones coming into north west Scotland waste sites catches our attention.

So we zoom in (right image) to find that almost all of it is accounted for by one landfill site on the the Isle of Lewis.

Bennadrove landfill site

Future work could increase the utility of this prototype webapp by:

  • allowing the user to browse over the time-series aspect of this dataset using a time slider control (like our through time on a map prototype)
  • providing a means to switch the focus of interest from incoming material to: outgoing material, processing activities (landfill, composting, metal recycling, etc.), or facilities offered (household, commercial, special disposals, etc.)
  • supporting filtering over the various dimensions
  • providing the means for a user to open their current data selection in a tool (like our data grid & graph prototype) that allows them to explore the data in more detail.