A simple alternative search over Open Data Scotland’s dataset indexes

The Open Data Scotland website provides an up-to-date list of the Open Data resources about Scotland. It is being developed by the volunteer-run OD_BODS project team, and the idea for it originated from Ian Watt’s Scottish Open Data audit.

The website has been built using the JKAN framework which provides to end users, a ready-made search-the-datasets feature (try the search box near to the top of this page). However, its search can sometimes excessively exclude because it returns only those datasets whose metadata contain all of the search words, consecutively.

For instance, say that we wanted to find all datasets related to waste management. We might think of entering the search words: waste management recycl bin landfill dump tip. With JKAN, we would fairly much have to search for each of those words individually then collate the results.

Search tuning is its own whole field of research/area of business but, we have built a simple alternative to the JKAN search, to better support exploratory searching. Click on the image below to try the demo.

A animated GIF of an app to demo a simple alternative search over Open Data Scotland's dataset indexes

Annotating data points on our prototype website

On our requirements list is, to weave interest-based navigation maps through our data site. And feedback from the recent SODU 2021 conference, affirmed this:

I like the site’s tools and visualisations, but more needs to be done to help me navigate my path of interest through the prototype website.

In an exploratory step towards fulfilling that requirement, we have annotated some data points with explanations/narrative. The idea is that that these annotations could become waymarks in navigation maps, to guide users between the datapoints which underpin data-based stories. We might even imagine how clicking a ‘next’ button on a waymark would visually ‘fly’ the user to the next datapoint in the story (which is, perhaps, on a different graph or different page). But(!) back to our present, very simple proof-of-concept implementation…​

Here’s how the annotations look in our present, proof-of-concept implementation:

Annotations plotted on Inverclyde’s household waste generated graph

Each annotation is depicted by an emoji which is plotted beside a datapoint (on a graph, or in a table). When the user hovers over (or clicks on) an annotation’s emoji, a pop-up will display some informative text.

We want to code annotations just as we would any other dataset – as a straighforward CSV file. So we have built a data-drive annotation mechanism. This has allowed us to specify annotations, as data, in a CSV file like this:

Annotations specified in a CSV data file

Each annotation record contains datapoint coordinates which specify the datapoint against which the annotation is to be plotted. The datapoint coordinates include a record-type which specifies the dataset against which the annotation is to be plotted. (In this example, the specified dataset household-waste-derivation-generation is a derived dataset, based on the household-waste and population datasets.)

This proof-of-concept, data-driven, annotation mechanism has been useful because it has:

  1. given us a model with moving parts to learn from,

  2. provided hints about how annotations can be used to help users understand and navigate the data,

  3. shown us that we need more structure around the naming and storage of derived datasets (and their annotations), and

  4. uncovered the difficultlies of retro-fitting an annotations mechanism into our prototype-6 website. (Annotations are displayed using off-the-shelf Vega-lite tooltips and Bulma CSS dropdowns, but these don’t provide a satisfactory level of placement/control/interactivity. More customised webpage components will be needed to provide a better user experience.)

“How is waste in my area?” – a regional dashboard

Introduction

Our aim in this piece of work is:

to surface facts of interest (maximums, minimums, trends, etc.) about waste in an area, to non-experts.

Towards that aim, we have built a prototype regional dashboard which is directly powered by our ‘easier datasets’ about waste.

The prototype is a webapp and it can be accessed here.

our prototype regional dashboard

Curiosities

Even this early prototype manages to surface some curiosities [1] …​

Inverclyde

Inverclyde is doing well.

Inverclyde’s household waste positions Inverclyde’s household waste generation Inverclyde’s household waste CO2e

In the latest data (2019), it generates the fewest tonnes of household waste (per citizen) of any of the council areas. And its same 1st position for CO2e indicates the close relation between the amount of waste generated and its carbon impact.

…​But why is Inverclyde doing so well?

Highland

Highland isn’t doing so well.

Highland’s household waste positions Highland’s household waste generation Highland’s household waste % recycled

In the latest data (2019), it generates the most (except for Argyll & Bute) tonnes of household waste (per citizen) of any of the council areas. And it has the worst trend for percentage recycled.

…​Why is Highland’s percentage recycled been getting worse since 2014?

Fife

Fife has the best trend for household waste generation. That said, it still has been generating an above the average amount of waste per citizen.

Fife’s household waste positions Fife’s household waste generation

The graphs for Fife business waste show that there was an acute reduction in combustion wastes in 2016.

Fife’s business waste

We investigated this anomaly before and discovered that it was caused by the closure of Fife’s coal fired power station (Longannet) on 24th March 2016.

Angus

In the latest two years of data (2018 & 2019), Angus has noticibly reduced the amount of household waste that it landfills.

Angus' household waste management

During the same period, Angus has increased the amount household waste that it processes as ‘other diversion’.

…​What underlies that difference in Angus’ waste processing?

Technologies

This prototype is built as a ‘static’ website with all content-dynamics occurring in the browser. This makes it simple and cheap to host, but results in heavier, more complex web pages.

  • The clickable map is implemented on Leaflet – with Open Street Map map tiles.
  • The charts are constructed using Vega-lite.
  • The content-dynamics are coded in ClojureScript – with Hiccup for HTML, and Reagent for events.
  • The website is hosted on GitHub.

Ideas for evolving this prototype

  1. Provide more qualitative information. This version is quite quantitative because, well, that is nature of the datasets that currently underlay it. So there’s a danger of straying into the “managment by KPI” approach when we should be supporting the “management by understanding” approach.
  2. Include more localised information, e.g. about an area’s re-use shops, or bin collection statistics.
  3. Support deeper dives, e.g. so that users can click on a CO2e trend to navigate to a choropleth map for CO2e.
  4. Allow users to download any of the displayed charts as (CSV) data or as (PNG) images.
  5. Enhance the support of comparisons by allowing users to multi-select regions and overlay their charts.
  6. Allow users to choose from a menu, what chart/data tiles to place on the page.
  7. Provide a what-if? tool. “What if every region reduced by 10% their landfilling of waste material xyz?” – where the tool has a good enough waste model to enable it to compute what-if? outcomes.

1. One of the original sources of data has been off-line due to a cyberattack so, at the time of writing, it has not been possible to double-check all figures from our prototype against original sources.